
GRID Superscalar:
a programming model for the Grid

Daniele Lezzi, Oriol Jorba

Barcelona Supercomputing Center

GOESSP Community Workshop, Hamburg, October 7

2009

GO-ESSP Workshop, Hamburg, 7 October 2009

MotivationMotivation

2

� Can I run my programs in parallel?

VS.
Explicit parallelism Implicit parallelism

fork

join

for(i=0; i < MSIZE; i++)
for(j=0; j < MSIZE; j++)

for(k=0; k < MSIZE; k++)
matmul(A(i,k), B(k,j), C(i,j))

…

Draw it b
y hand

means explicit

GO-ESSP Workshop, Hamburg, 7 October 2009

• Basic idea

...
for (i=0; i<N; i++){

T1 (data1, data2);
T2 (data4, data5);
T3 (data2, data5, data6);
T4 (data7, data8);
T5 (data6, data8, data9);

}
...

Sequential Application

T10 T20

T30
T40

T50

T11 T21

T31
T41

T51

T12

…

.

.

.

Task graph creation

based on data

precedence

Task selection +

parameters direction

(input, output, inout)�

Resource N

Scheduling,

data transfer,

task execution

Resource 1

Resource 2

Resource 3

Synchronization,

results transfer

Parallel Resources
(multicore,SMP, cluster, grid)�

GO-ESSP Workshop, Hamburg, 7 October 2009

• Main objective: Reduce the complexity of applications development

•Complexity of writing an application for a parallel platform
comparable to writing it for a sequential platform

• Main characteristics

• Task: unit of parallel work

• Non intrusive programming model

• Data dependence detection

• Data renaming

• Exploitation of distant parallelism

MotivationMotivation

GO-ESSP Workshop, Hamburg, 7 October 2009

app.c

app-functions.c

for(i=0; i < MSIZE; i++)
for(j=0; j < MSIZE; j++)

for(k=0; k < MSIZE; k++)
matmul(A(i,k), B(k,j), C(i,j))

void matmul(char *f1, char *f2, char *f3)
{
getBlocks(f1, f2, f3, A, B, C);
for (i = 0; i < A->rows; i++) {

for (j = 0; j < B->cols; j++) {
for (k = 0; k < A->cols; k++) {

C->data[i][j] += A->data[i][k] * B->data[k][j];
putBlocks(f1, f2, f3, A, B, C);

}

Local scenario

DesignDesign

GO-ESSP Workshop, Hamburg, 7 October 2009

Middleware (Globus,
SGE, SSH)

Distributed
architecture

app.c

app-functions.capp-functions.capp-functions.capp-functions.capp-functions.capp-functions.c

DesignDesign

GO-ESSP Workshop, Hamburg, 7 October 2009

Block matrix multiplication

void matmul(char *f1, char *f2, char *f3)

Input Input Output

interface MATMUL { void matmul (in char* f1, in char* f2, inout char* f3
);};

GSMaster.On();
for (int i = 0; i < MSIZE; i++) {

for (int j = 0; j < MSIZE; j++) {
for (int k = 0; k < MSIZE; k++) {

matmul(A[i][k], B[k][j], C[i][j]);
}
}

}
GSMaster.Off(0);

IDL File

Sequential code prototype

Master code

Programming examples: Block matrix multiplicationProgramming examples: Block matrix multiplication

GO-ESSP Workshop, Hamburg, 7 October 2009

Programming examples

Block matrix multiplication
void matmul(char *f1, char *f2, char *f3){

block *A;
block *B;
block *C;
A = get_block(f1, BSIZE, BSIZE);
B = get_block(f2, BSIZE, BSIZE);
C = get_block(f3, BSIZE, BSIZE);
block_mul(A, B, C);
put_block(C, f3); //A and B are sources
delete_block(A);
delete_block(B);
delete_block(C);

}

static block *block_mul(block *A, block *B, block *C) {
/* Pre: The three parameters must exist */
int i, j, k;
for (i = 0; i < A->rows; i++)
for (j = 0; j < B->cols; j++)
for (k = 0; k < A->cols; k++)
C->data[i][j] += A->data[i][k] * B->data[k][j];

return C;
}

Worker Code

GO-ESSP Workshop, Hamburg, 7 October 2009

Successful stories Mapping of molecular potential energy hypersurfacesSuccessful stories Mapping of molecular potential energy hypersurfaces

• Total execution time: 17 hours

• Number of executed tasks: 1120

• Each task between 45 and 65 minutes

22 CPUs14 CPUs

28 CPUs

GO-ESSP Workshop, Hamburg, 7 October 2009

Successful stories: Mapping of molecular potential energy hypersurfacesSuccessful stories: Mapping of molecular potential energy hypersurfaces

1. Molecular structure generation: this step involves the generation of the set of molecular structures defining
the potential energy hypersurface. The result is a large number of input data fifififiles.

2. Electronic structure calculation: one evaluation with the electronic structure package is executed for each of
the data files generated in step 1. Since the output of each of these evaluations is a large output file, a
fifififiltering process that obtains the required information (molecular coordinates and total energy) is applied.

3. Data integration: the data generated by each of the calculations in step 2 is integrated in a single ASCII file.

GHyper Main

Molecular
Structures
Generator

Electronic
Calculation

and
Filtering

Data
Integrator

GHyper
Main

Grid Client

Globus

Host1 Host2 HostN

Filtered Files

Output Files

Data Files

Filtered FilesOutput Files
Data Files

GRIDSs
runtime
library

Globus

Grid
Servers

Grid Server

Globus

Filtered Files
Local Filter

GHyper
Function

s
Output Files

GAMESS

Main

GO-ESSP Workshop, Hamburg, 7 October 2009

GRIDSs + MPI + OpenMP: Reverse Time Migration (RTM)GRIDSsGRIDSs + MPI + + MPI + OpenMPOpenMP: Reverse Time : Reverse Time MigrationMigration (RTM)(RTM)

GO-ESSP Workshop, Hamburg, 7 October 2009

• GridSuperscalar can have its own replica management

• Applications see the directory tree of their matter, but files may be in any node

• Hopefully replicated

• Potential benefits:

• Keep results obtained by one computation to be used by a different one

• Results are kept in the node that computed them, but are accessible from any node

• Results reused by many jobs can be stored in all nodes that used them

• Increases the probability of running a job without having to move the data

• All is transparent to the applications (as long as the same names are used)

The runtime: Replica managementThe runtime: Replica management

GO-ESSP Workshop, Hamburg, 7 October 2009

JRA4, task 3: operational services

• Definition of an initial testbed

• Multimodel ensemble mean of CMIP5 data held at BADC and WDCC,
using CDO regridding; evaluation of netcdf4 compression

• Integration in GRIDSs of the dynamic status of the network and
monitoring services (vERC service monitoring, NA2)

• Fortran bindings, replica management and intermediate files handling

• Management of the results between different executions

IS-ENES ActivitiesISIS--ENES ENES ActivitiesActivities

GO-ESSP Workshop, Hamburg, 7 October 2009

JRA4, task 3: operational services. OPEN ISSUES

• Relation to ESG

• Data acces (wget, OPeNDAP, GridFTP..)

IS-ENES ActivitiesISIS--ENES ENES ActivitiesActivities

GO-ESSP Workshop, Hamburg, 7 October 2009

NA2 Task4: "Prototype ESM Grid environment"

• Use of the same testbed of JRA4

• Pipelining of the execution of the Echam5 standalone model and of
the post-processing of the results (CMCC)

IS-ENES ActivitiesISIS--ENES ENES ActivitiesActivities

Euro-Mediterranean
Center for Climate Change

GO-ESSP Workshop, Hamburg, 7 October 2009

IS-ENES ActivitiesISIS--ENES ENES ActivitiesActivities

Euro-Mediterranean
Center for Climate
Change

GO-ESSP Workshop, Hamburg, 7 October 2009

IS-ENES ActivitiesISIS--ENES ENES ActivitiesActivities

GO-ESSP Workshop, Hamburg, 7 October 2009

Q&A

http://www.bsc.es/grid/grid_superscalar
daniele.lezzi@bsc.es

